
 Molecular Quantum Modeling of Water

 Purpose:
     

This paper was done to familiarize myself with some of the Quantitative Molecular Properties of
water. This was a learning experience for me. This work provides  Quantitative Solutions and
 Simulations for the molecular behavior of water. This material has been gathered from a number
of books and papers on the theoretical and experimental work on water. A list of some the books
and papers used in this analysis are given at the end of this work. This is not original work with
regard to the discovery or descriptions of phenomena. This work is simply conventional Quantum
Mechanics abstracted from various QM texts and organized into four major parts. (See the four
parts listed below.) The goal was to aid my understanding by capturing the molecular, or Quantum
Mechanical, structure of water with mathematical models implemented in the Mathcad, Maple,
and Mathematica programming languages. We will use this methodology to mathematically
simulate various molecular phenomena associated with water. 
 

In Summary, water’s properties are encoded in its molecular structure and energies. 

 This investigation has four major parts. 
   1. Define the Key Concepts of Quantum Mechanics (QM),    
   2. Develop a QM model for an electron, 
   3. Develop a QM model for a hydrogen ion, atom, and molecule, 
   4. Using a Linear Combination of Atomic Orbitals (LCAO), 
            develop a QM model for the water molecule. 
  

 NOTE:   Mathcad operations are shown in purple italics. 
                For example: 

 This Mathcad File is available at: VXPhysics.com/Mathcad
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 Mathcad 3D Perspective Plots of Hydrogenic Molecular Orbitals. See Section VIII.

Tom Kotowski
July 31, 2023



 Introduction

Water, a fundamental compound and the essence of life, is ubiquitous in our world. Its unique properties and crucial role
in biological processes have captured the interest of scientists for centuries. While macroscopic properties of water have
been extensively studied and utilized, understanding its behavior at the molecular level remains a complex and intriguing
challenge. Molecular quantum modeling provides a powerful tool to explore the microscopic interactions and dynamics
that govern the behavior of water molecules.
  

This paper embarks on a journey into the realm of molecular quantum mechanics, focusing on the fascinating properties
of water and its enigmatic behavior in various environments. By employing key postulates of quantum mechanics, this
study aims to shed light on the intricate nature of water through rigorous theoretical analysis and numerical simulations.
 

 The paper is organized as follows:

I. Six Key Postulates of Quantum Mechanics:** This section provides a foundational basis for the subsequent
discussions, introducing the core principles that underlie the quantum mechanical framework.
 

II. QM: Schrödinger Wavefunction, Matrix, and Wigner Phase Space:** Building upon the postulates, this section
delves into the mathematical formalisms of quantum mechanics, including the Schrödinger wavefunction, matrix
representation, and the Wigner phase space representation.

III. Solution of Schrödinger Wave Equation for Propagation of an Electron:** Here, the focus shifts to solving the
Schrödinger wave equation, providing insight into the behavior of electrons in different environments.

IV. Numerical Schrödinger Equation Solutions: 3-D Harmonic Oscillator:** This section explores numerical solutions of
the Schrödinger equation, with a specific emphasis on the 3-D harmonic oscillator, a fundamental model in quantum
mechanics.

V. Basic Quantum Mechanics in Coordinate, Momentum & Phase Space:** Expanding further into quantum mechanics,
this section investigates the behavior of systems in different spaces, including coordinate, momentum, and phase space.
 

VI. Molecular Quantum Mechanics: Hydrogen Molecule Orbits:** The focus now shifts to the application of quantum
mechanics in molecular systems, with a particular focus on the orbits of hydrogen molecules.

VII. 3D Plots of sp2, dz2, d1, 3pz Hydrogenic Hybrid Orbitals:** Building on the previous section, this part explores
the three-dimensional plots of various hydrogenic hybrid orbitals, revealing their distinctive shapes and characteristics.
 

VIII. Linear Combination of Atomic Orbitals (LCAO):** This section introduces the concept of LCAO, a fundamental
technique used in molecular quantum mechanics to describe molecular orbitals.
 

IX. Molecular Structure of Water:** Here, we transition to the central focus of this study, exploring the molecular
structure of water and the intricacies of its intermolecular interactions.

X. Radial Distribution Functions of Water: Derived from Radiation Total Scattering:** Finally, this section presents a
detailed analysis of radial distribution functions of water, derived from radiation total scattering data, providing valuable
insights into the molecular arrangement of water molecules.
 

Through the comprehensive investigation of these topics, this paper aims to provide a deeper understanding of the
molecualr structure of water and how it establishes the macroscopic behavior of water.

VXPhysics 2



 I.  Six Key Postulates of Quantum Mechanics

Physical Chemistry,  Engel, Read, 3rd Ed 2014

Quantum  mechanics  can  be  formulated  in  terms  of  six  postulates.  Postulates cannot be proven, but they can be
tested. The five postulates discussed in this chapter provide a framework for summarizing the basic concepts of QM.

POSTULATE 1
The state of a quantum mechanical particle is completely specified by a wave function.The state of a physical
system is represented by a normalized ket in a Hilbert space H. To simplify the notation, only one spatial coordinate
is considered. The probability that the particle will be found at time t0 in a spatial interval of width centered at x0 is

given by  

The wave function must be a single-valued function of the spatial coordinates. If this were not the case, a particle
would have more than one probability of being found in the same interval. 

POSTULATE 2
For every measurable property of a system such as position, momentum, and energy, there exists a corresponding
operator in quantum mechanics. An experiment in the laboratory to measure a value for such an observable is
simulated in the theory by operating on the wave function of the system with the corresponding operator. All  quantum
mechanical operators belong to a mathematical class called Hermitian operators that have real 
eigenvalues. For a Hermitian operator

POSTULATE 3 (Born's Rule)
In any single measurement of the observable that corresponds to the operator, the only values that will ever be 
measured are the eigenvalues of that operator

POSTULATE 4
If the system is in a state described by the wave function, and the value of the observable a is measured once on
each of many identically prepared systems, the average value (also called the expectation value) of all of these
measurements is given by the normalized wavefunction

As we know, two cases apply with regard to Ψ(x,t):  it either is or is not an eigenfunction of the operator ̂ A .
These two cases need to be examined separately. The state space of a composite physical system is the  
tensor product (See Section VI) of the state spaces of the component physical systems.  If we have systems
number 1 to n,   prepared in state |ψi⟩,  then the joint state is of the total system is:    |ψ1⟩  |ψ2⟩  ⋅ ⋅ ⋅    |ψn⟩

POSTULATE 5 
The evolution in time of a quantum mechanical system is governed by the time-dependent Schrödinger equation:

POSTULATE 6  (See Section V)
Quantum superposition is a fundamental principle of quantum mechanics. In classical mechanics, things like position
or momentum are always well-defined. We may not know what they are at any given time, but that is an issue of
our understanding and not the physical system. In quantum mechanics, a particle can be in a superposition of
different states. It can be in two places at once (see double-slit experiment). A measurement always finds it in
one state, but before and after the measurement, it interacts in ways that can only be explained by having a
superposition of different states. A simple demonstration of superposition can be made using a beam of light
that passes through a polarizing filter.  
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 II. QM: Schr ö dinger Wavefunction, Matrix, and Wigner Phase Space 

We will model three Formulations of Quantum Mechanics:  
 Schr ö dinger Wavefunction, Matrix, and Wigner Phase Space

There are seven commonly used nonrelativistic formulations for quantum mechanics. These are the
wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, formulations.
Also mentioned are the many-worlds and transactional interpretations. The various formulations differ
dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all
experimental results. 

   A. The matrix formulation   (Heisenberg)     
The matrix formulation of quantum mechanics, developed by Werner Heisenberg in June of 1925, was the first
formulation to be uncovered. The wavefunction formulation, which enjoys wider currency today, was developed
by Erwin Schrödinger about six months later.

   B. The wavefunction formulation  (Schr ö dinger)  
 Compared to the matrix formulation, the wavefunction formulation of quantum mechanics shifts the focus from
‘‘measurable quantity’’ to ‘‘state.’’ The state of a system with two particles ~ ignoring spin ! is represented
mathematically by a complex function in six-dimensional configuration space.

 C. Phase space formulation  - See Section XXIV:   The Wigner Quasiprobability Distribution)    
For a single particle restricted to one dimension, the Wigner phase-space distribution function is

D. The path integral formulation (Feynman)
The path integral formulation (also called the sum-over-histories formulation) shifts the focus from ‘‘state’’ to
‘‘transition probability.’’

E. Density matrix formulation 
The density matrix corresponding to a pure state |ψ> is the outer product 
Given the density matrix pˆ, the quantal state |ψ> can be found as follows: First select an arbitrary state |ϕ>.
The unnormalized  ket |ψ>   is pˆ|ϕ>  (as long as this quantity does not vanish).

F. Second quantization formulation This formulation features operators that create and destroy
particles. It was developed in connection with quantum fixed theory, where such actions are physical
effects ~ for example, an electron and a positron are destroyed and a photon is created ! . 

G. Variational formulation
The ‘‘variational formulation’’ must not be confused with the more-commonly-encountered ‘‘variational
method", which provides a bound on the ground state energy. Instead the variational formulation
provides a full picture describing any state—not just the ground state—and dictating its full time
evolution—not just its energy. It is akin to Hamilton’s principle in classical mechanics.
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 III. Solution of  Schrödinger  Wave Equation for Propagation of an Electron

Given an electron of mass, me, velocity, ve, kinetic energy of 1 eV 

By Quantum Mechanics, it has an associated de Broglie wavelength, λe, and wavenumber k0
Planck's Constant: h 6.626 10
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To solve the one-dimensional Schrödinger equation for a free particle of mass m moving with velocity v,
 we can proceed a follows:

 Solve Schrödinger's Wave Equation for the Quantum Wavefunction, Ψ(x, t)
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 Plot Wavefunction Ψ(x,t) over Distance Range, x
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 IV. Numerical Schr ö dinger Equation Solutions: 3-D Harmonic Oscillator

 Parameters: E 7.5:= L 0:=
rmax 6:= r 0 0.01, rmax..:=Reduced mass: μ 1:= Angular momentum: L 0:= Integration limit:

Force constant: k 1:=

 Solve Schrödinger's equation numerically. Use Mathcad's ODE solve block:
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 V.  Basic Quantum Mechanics in Coordinate, Momentum & Phase Space

 Tutorial:  The Wigner Quasiprobability Distribution,  Wikipedia
The Wigner quasiprobability distribution (also called the Wigner function or the Wigner–Ville distribution, after
Eugene Wigner and Jean-André Ville) is a quasiprobability distribution. It was introduced by Eugene Wigner in
1932 to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that
appears in Schrödinger's equation to a probability distribution in phase space.

It is a generating function for all spatial autocorrelation functions of a given quantum-mechanical wavefunction ψ(x).
Thus, it maps on the quantum density matrix in the map between real phase-space functions and Hermitian
operators introduced by Hermann Weyl in 1927, in a context related to representation theory in mathematics (see
Weyl quantization). In effect, it is the Wigner–Weyl transform of the density matrix, so the realization of that
operator in phase space. 

In 1949, José Enrique Moyal, who had derived it independently, recognized it as the quantum moment-generating
functional, and thus as the basis of an elegant encoding of all quantum expectation values, and hence quantum
mechanics, in phase space. 

 Relation to classical mechanics
A classical particle has a definite position and momentum, and hence it is represented by a point in phase
space. Given a collection (ensemble) of particles, the probability of finding a particle at a certain position in phase
space is specified by a probability distribution, the Liouville density. This strict interpretation fails for a
quantum particle, due to the uncertainty principle. Instead, the above quasiprobability Wigner distribution
plays an analogous role, but does not satisfy all the properties of a conventional probability distribution; and,
conversely, satisfies boundedness properties unavailable to classical distributions.

For instance, the Wigner distribution can and normally does take on negative values for states which have no
classical model—and is a convenient indicator of quantum-mechanical interference. (See below for a
characterization of pure states whose Wigner functions are non-negative.) Smoothing the Wigner distribution
through a filter of size larger than ħ (e.g., convolving with a phase-space Gaussian, a Weierstrass transform, to yield
the Husimi representation, below), results in a positive-semidefinite function, i.e., it may be thought to have been
coarsened to a semi-classical one.

Regions of such negative value are provable (by convolving them with a small Gaussian) to be "small": they cannot
extend to compact regions larger than a few ħ, and hence disappear in the classical limit. They are shielded by the
uncertainty principle, which does not allow precise location within phase-space regions smaller than ħ, and thus
renders such "negative probabilities" less paradoxical.

 Definition and meaning
The Wigner distribution W(x,p) of a pure state is defined as

where ψ is the wavefunction, and x and p are position and momentum, but could be any conjugate variable pair (e.g.
real and imaginary parts of the electric field or frequency and time of a signal). Note that it may have support in x even
in regions where ψ has no support in x ("beats").  It is symmetric in x and p: See the Phase Space Distribution of the
Wigner Function Expressed in Dirac Notation shown on the following page.
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 Ground State Probability Distribution for a Harmonic Oscillator: Math

We will use calculations on the harmonic oscillator to illustrate the relationship between the coordinate, momentum
and phase space representations of quantum mechanics.
The first (ground state) oscillator eigenfunction is given below.  
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As is well‐known, in coordinate space the position
operator is multiplicative and the momentum
operator is differential. In momentum space it is the
reverse, while in phase space, both position and
momentum are multiplicative operators. 

 Phase Space Distribution Calculations: The Wigner Quasiprobability Distribution for a Harmonic Oscillator
Phase‐space calculations require a Phase‐Space Distribution, such as the Wigner function. Because this approach to
quantum mechanics is not as familiar as the Schrödinger formulation, several important equations will be deconstructed
using Dirac notation.  Expressed in Dirac Notation, the Wigner Function resembles a classical trajectory.

W0 x p, ( )
1

π
e

x
2-( ) p

2-:=

The four Dirac brackets are read from right to left as follows: (1) is the amplitude that a particle state Ψ has at position 
(x ‐ s/2); 2 is the amplitude that a particle position (x ‐ s/2) has momentum p;  3 is the amplitude that a particle has the
momentum p has position (x +s/2);  (4) is the amplitude that a particle with position (x + s/2) 

N 60:= i 0 N..:= xi 3-
6 i

N
+:= j 0 N..:= p j 5-

10 j
N

+:= Wigneri j, W0 xi p j, ( ):=

Wigner

 Harmonic Oscillator Ground State
 Ψ(x,p) Position - Momentum 3-D

 Phase Space Probability Distribution
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In these phase‐space calculations W(x,p) appears to behave like a classical probability function. By eliminating
the need for differential operators, it seems to have removed some of the weirdness from quantum mechanics.
The Wigner function, phase‐space approach only temporarily hides the weirdness generated using a
Schrödinger wave function.

To see how the weirdness is hidden we generate the Wigner function for the v = 2 harmonic oscillator state.

W1 x p, ( ) e
x
2( )- p

2- 2 x
2 2 p

2+( ) 1-
π

:=

Next, it is demonstrate that the Wigner functions for the ground and excited harmonic oscillator states
are orthogonal over phase space.

This result indicates that W1(x,p) must be negative over some part of phase space, because the graph of
W0(x,p) shows that it is positive for all values of position and momentum. To explore further we display the
Wigner distribution for the v = 1 harmonic oscillator state.

Wigneri j, W1 xi p j, ( ):=

 Harmonic Oscillator ν = 1 State
 Ψ(x,p) Position - Momentum 3-D Phase Space

 Probability Distribution

Wigner Wigner, 
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 Quantum Numbers for Orbitals for Hydrogen and Oxygen

The principal quantum number is denoted by the letter "n" and is one of the four quantum numbers that describe the
energy levels of electrons in an atom. It represents the main energy level or shell in which the electron resides.

 Hydrogen Atom (H): The electron configuration of hydrogen is simply one electron in its lone electron shell.
Therefore, the principal quantum number (n) for hydrogen is 1.

 Hydrogen molecule (H2 )

Each hydrogen atom contributes one electron to form a covalent bond. The electron configuration of a hydrogen

molecule can be represented as (σ1s)2, 
where σ1s is the molecular orbital formed by the combination of the two 1s atomic orbitals from each hydrogen atom.
In a hydrogen molecule (H2), the principal quantum number refers to the quantum number of the molecular orbitals that

result from the combination of the atomic orbitals of the two hydrogen atoms.
The molecular orbitals in a hydrogen molecule can be classified as sigma (σ) and pi (π) orbitals. 
Sigma (σ) molecular orbital: formed by the constructive overlap of the two 1s atomic orbitals from each H atom, 
The pi (π) molecular orbitals:     formed by the sideways overlap of the 1s atomic orbitals.
The principal quantum numbers for the molecular orbitals are as follows:
Sigma (σ) molecular orbitals: The electrons in sigma orbitals have a principal quantum number (n) of 1, 
as they arise from the overlap of the 1s atomic orbitals.
Pi (π) molecular orbitals: The electrons in pi orbitals also have a principal quantum number (n) of 1, 
as they also originate from the overlap of the 1s atomic orbitals.

 Oxygen Atom, (O):

The atomic number of oxygen is 8, it has 8 electrons. The electron configuration of oxygen is: 1s2 2s2 2p4. 
Here, there are two electrons in the first energy level (n=1) and six electrons in the second energy level (n=2). 
So, the principal quantum number (n) for oxygen's valence electrons (outermost electrons) is 2.

 An oxygen molecule  (O2)

Each oxygen atom has its set of quantum numbers for its electrons. The quantum numbers describe the properties of
the electrons in the atom or molecule, including their energy levels, angular momentum, magnetic orientation, and spin.

 Each oxygen atom in O2 has the following quantum numbers:
1. Principal Quantum Number (n): The principal quantum number determines the main energy level or shell of the
electron. In oxygen atoms, the electrons are distributed in different electron shells, so they have different values of n.
For oxygen, the possible principal quantum numbers are 1, 2, 3, and so on.
2. Azimuthal Quantum Number (l): The azimuthal quantum number defines the subshell or orbital type. In oxygen
atoms, the electrons can have l values of 0 to (n-1) for each value of n. For example, if n = 2, l can be 0 or 1.
3. Magnetic Quantum Number (m_l): The magnetic quantum number specifies the orientation of the orbital in space.
For each value of l, there are (2l + 1) possible values of m_l. So, for l = 0, there is only one possible value of m_l, and
for l = 1, there are three possible values of m_l.
4. Spin Quantum Number (m_s): The spin quantum number determines the spin state of the electron, either +1/2
(spin-up) or -1/2 (spin-down).

 In a water molecule (H 2 O), the electrons from the hydrogen atoms and the oxygen atom combine to form molecular

orbitals. The specific quantum numbers for the electrons in these molecular orbitals will depend on the electron
configuration and bonding of the water molecule. The interactions between the hydrogen and oxygen atoms will
determine the distribution of the electrons in the molecular orbitals.
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There is a mix of different types of hybrid orbitals and atomic orbitals for H2O. Let's clarify each one:

1. **sp2 Hybrid Orbitals:**

The sp2 hybrid orbitals are formed when one s orbital and two p orbitals from the same atom combine to create three
equivalent hybrid orbitals. These hybrid orbitals are used to explain the molecular geometry in molecules with trigonal
planar geometry, like in the case of boron trifluoride (BF3) or the double bonds in molecules like ethene (C2H4) and
formaldehyde (CH2O).

2. **dz2 Atomic Orbital:**

The dz2 orbital is one of the five d orbitals (dxy, dyz, dxz, dz2, and dx2-y2) present in atoms with d orbitals. The dz2
orbital has a lobed shape along the z-axis (a set of lobes above and below the xy plane) and is often associated with
the d-block elements in the periodic table.

3. **d1 Configuration:**

The term "d1" refers to the electron configuration of an atom or ion that has one electron in its d orbital. For example,
"3d1" represents an atom/ion with one electron in the 3d orbital.

4. **3pz Atomic Orbital:**

The 3pz orbital is one of the three p orbitals (3px, 3py, and 3pz) present in atoms with p orbitals. The 3pz orbital has a
dumbbell shape along the z-axis and is oriented along the z-axis.

It's important to note that "Hydrogenic" typically refers to orbitals for hydrogen-like atoms, where there is only one
electron (e.g., H, He+, Li2+). When considering atoms other than hydrogen, the term "hybrid orbitals" is more
appropriate.
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 VI. Molecular Quantum Mechanics: Hydrogen Molecular Orbits
Molecular Quantum Mechanics, Peter Akins, Ronald Friedman, Oxfore University Press

The first term represents the repulsive interaction between the two nuclei, and within the Born–Oppenheimer

approximation is a constant for a given relative location of the nuclei.  As H2
+ has only one electron, it has a status in

valence theory analogous to the hydrogen atom in the theory of atomic structure. Just as the Schrödinger equation for the

hydrogen atom is separable and solvable when expressed in spherical polar coordinates, so the equation for H2
+ is

separable and solvable when expressed in ‘ellipsoidal coordinates’ (μ, ν, ϕ), where

and ϕ is the azimuthal angle around the internuclear axis. In these coordinates,
the two nuclei lie at the foci of ellipses of constant μ. The resulting solutions are
called molecular orbitals and resemble atomic orbitals but spread over both nuclei.

 Molecular Orbital Theory (MO) 
    

Even the simplest molecule, H2
+, consists of three particles, and its Schrödinger equation cannot be solved

analytically. We are forced to make an approximation, but use the exact solutions for H2
+ as a guide. Another

reason why making a further approximation is quite sensible is that we already have available quite good atomic
orbitals for many-electron atoms, and it seems appropriate to try to use them as a starting point for the description of
many-electron molecules built from those atoms.

 8.3  Linear combinations of atomic orbitals 
Inspection of the form of the wavefunctions for H2

+ suggests that they can be simulated by forming linear

combinations of hydrogen atomic orbitals: 

where ϕa is a H1s-orbital on nucleus A and ϕb its analogue on nucleus B. In the first case, the accumulation of electron

density in the internuclear region is  simulated by the constructive interference that takes place between the two
waves centered on neighboring atoms. The nodal plane in the true wavefunction is recreated by the destructive
interference between waves superimposed with opposite signs. 

The partial justification for simulating molecular orbitals as an LCAO, a linear combination of atomic orbitals, can be
appreciated by examining the Hamiltonian. When the electron is close to nucleus A, rA << rB , and the hamiltonian is

approximately

Apart from the final, constant term, this hamiltonian is the same as that for a hydrogen atom. Therefore, close to
nucleus A, the wavefunction of the electron will resemble a hydrogen atomic orbital. The same is true close to B,
and this form of the solution is captured by the two linear combinations constructed above.

 8.2 The hydrogen molecule–ion
Even within the Born–Oppenheimer approximation there is only one molecular species for which the Schrödinger

equation can be solved exactly: the hydrogen molecule–ion, H2
+.   The hamiltonian (H) for this species is
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 8.4 The hydrogen molecule H2

We model the electronic structure of the hydrogen molecule, H2 , by the addition of a second electron to the 1σg

orbital, to give the configuration 1σ2
g . The orbital description is therefore ψ+(1)ψ+(2), where the 1 and 2 in par-

entheses are short for r1 and r2 , respectively, the locations of the two electrons. Writing the true wavefunction ψ(1,2)

as a product is an approximation that is valid only if electron–electron interactions are ignored or replaced by some
kind of average one-electron potential energy (as in the central-field approximation, Section 7.12) so that the true
hamiltonian

is replaced by an expression of the form  

where each Hi is expressed in terms of the coordinates of the electron I alone. The approximate spatial wavefunction 

ψ+(1)ψ+(2) is symmetric under particle interchange, so the spin component must be proportional to μ(1)β(2) - μ(1)α(2)

to guarantee that the overall wavefunction is anti-symmetrical. Therefore, when the two electrons enter a single
molecular orbital, they do so with paired spins (). Spin-pairing is thus seen not to be an end in itself, but the way that
electrons must arrange themselves in order to pack into the lowest energy orbital.

 Molecular orbital theory of Polyatomic Molecules 
The molecular orbitals of polyatomic species are LCAOs just like those above: 

ψ

r

cr φr( )= 8.35

The main difference is that now the sum extends over all the atomic orbitals of the atoms in the molecule. However, as
for diatomic molecules, only atomic orbitals that have the appropriate symmetry make a contribution, because only
they  have net overlap with one another. When a molecule lacks any symmetry elements (other than the identity), there is
no way of avoiding assembling each molecular orbital from the entire basis set. However, when the molecule has elements
of symmetry, group theory can be particularly helpful in deciding which orbitals can contribute to each molecular orbital,
and in classifying the resulting orbitals according to their symmetry species. 

 8.8 Symmetry-adapted linear combinations
The concept behind the construction of a symmetry-adapted linear combination (SALC) is to identify two or more
equivalent atoms in a molecule, such as the two H atoms in H2O, and to form linear combinations of the atomic

orbitals they provide that belong to specific symmetry species. Then molecular orbitals are constructed by forming linear
combinations of each SALC with an atomic orbital of the same symmetry species on the central atom (the O atom in

H2O).

 Symmetry Analysis for H2 O

Water belongs to the C2ν  symmetry group and has the following four symmetry elements: E, Cz
2 , σxz , and σyz. 

Its character table is shown below. 

It can be thought of as a four dimensional
space with the A1, A2, B1, and B2

irreducible representations playing the 
role of unit vectors of vector algebra. 
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 Orbital Angular Momentum
Molecular Physical Chemistry, José Teixeira-Dias,  Section 3.4

 3.4 Angular Momentum
  

In classical mechanics, the motion of one particle around a center of force can be characterized by two kinds of
momenta, linear and angular momenta. Let r be the vector from the center of force to the particle position, 

and v the corresponding velocity vector,

The classical definitions of the linear 
and angular momenta are given by

and

where the components of L along the x, y, and z axes are

 3.4.1 Orbital Angular Momentum

The quantum-mechanical operators of the linear momentum are given by

The angular momentum associated with one-electron motion around a center of force is called orbital angular
momentum. Substitute the above px into Lx leads to the expressions for the orbital angular momentum operators:

This operator commutes with each angular momentum component,

the last expression suggests a separation of the variables θ and ϕ in the eigenfunctions. The one-electron eigenvalue
equations and quantum numbers for the square and the z-component of the angular momentum operators are given 

where the eigenfunctions
are called spherical harmonics and Pm

l 

are the associated Legendre polynomials.
See the Section below: VII. 3D Plots.

The square of the angular momentum operator of an isolated atom commutes with each of its components.
However, no two components commute with each other. Therefore, the square of the angular momentum operator
and only one of its angular momentum components, for example the z-component, have a common complete set of
eigenfunctions. In spherical coordinates, the angular momentum operators involve only the variables θ and ϕ. 
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 VII. 3D Plots of sp2 , dz2 , d1 , 3pz   Hydrogenic Hybrid Orbitals
Molecular Quantum Mechanics, Atkins    Chapter 3: Rotational Motion - Spherical Harmonics

Quantum Chemistry, Levine,   Chapter 6: The Hydrogen Atom 

 3D Plots of three sp2  Hydrogenic Hybrid Orbitals

 Generate the three sp2  Spherical Harmonic Hybrid Orbitals and represent them graphically

i 0 30..:= θi
π i
30

:= j 0 40..:= ϕj
2π j

40
:=

The two p orbitals are represented by the corresponding spherical harmonics  The s orbital can be represented
simply by  a constant: 

px i j, sin θi( ) cos ϕj( ):= py i j, sin θi( ) sin ϕj( ):=

 Define the three hybrid orbitals, using the s orbital radius to be 1/3

The first hybrid orbital, sp2(1) sp21i j, 
0.333

3

2

3
px i j, +:=

The second  hybrid orbital, sp2(2) sp22i j, 
0.333

3

1

6
px i j, -

1

2
py i j, -:=

The third  hybrid orbital, sp2(3) sp23i j, 
0.333

3

1

6
px i j, -

1

2
py i j, +:=

 Define the x, y, z coordinates for the parametric plots: 

x1i j, sp21i j, sin θi( ) cos ϕj( ):= x2i j, sp22i j, sin θi( ) cos ϕj( ):= x3i j, sp23i j, sin θi( ) cos ϕj( ):=

y1i j, sp21i j, sin θi( ) sin ϕj( ):= y2i j, sp22i j, sin θi( ) sin ϕj( ):= y3i j, sp23i j, sin θi( ) sin ϕj( ):=

z1i j, sp21i j, cos θi( ):= z2i j, sp22i j, cos θi( ):= z3i j, sp23i j, cos θi( ):=

x1 y1, z1, ( ) x3 y3, z3, ( )

 Plot Oribitals

x2 y2, z2, ( )
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 3D Plot of dz2   Hydrogenic Hybrid Orbital

 Generate the  dz 2   hybrid orbital and represent it graphically

i 0 31..:= θi
π i
31

:= j 0 41..:= ϕj
2π j

41
:=

Thus, θ goes from 0 to π, and φ goes from 0 to 2π.  Now, define the spherical harmonic
corresponding to the desired orbital (the angular part) Ylm as a function of θ and φ, using the

definitions of the angular parts for the atomic orbitals.  Let us examine the 3d z
2  orbital, for which Ylm

is defined as:

 Create a Parametric Plot of (x,y,z)

 Spherical Harmonic Functions, Ylm

Ylmi j, 3 cos θi( )2
1-:=

x.i j, 
Ylmi j, sin θi( ) cos ϕj( ):=

y.i j, 
Ylmi j, sin θi( ) sin ϕj( ):=

z.i j, 
Ylmi j, cos θi( ):=

The dz2 Orbital

x. y., z., ( )
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 Generalized Plots of 3D Plots of  Hydrogenic Hybrid Orbitals 

  We will plot hydrogen orbitals given the orbital quantum numbers conventional parameters: n , l , m

Y(l, m, θ, ϕ) is the spherical harmonic or angular part of an orbital, where l is the angular momentum (azimuthal)
quantum number and m is the magnetic quantum number. θ is the angle with the z axis in spherical coordinates
and ϕ  is the angle around the z axis in spherical coordinates. 

 Y(l, m, θ, ϕ) Spherical Harmonics  Radial Component 3p (S is Slater Orbital)

  dz 2 Orbital Quantum Numbers

n =1
l = 2
m = 0  

θ Angle with z-axis
ϕ Azimuthal z-axis

 Electron Constants:
R3p r( )

1

81
2 3 r e

1-
3

r

 4
2

3
r-





:=

a0

ε0 h
2

π me qe
2

:=
R3pS r( )

2

1215
2 15 r

2 e

1-
3

r

:=

ζ θ ϕ, l, m, ( )

0

l m-

i

l!( )
2

cos θ( ) 1-( )
l m- i- cos θ( ) 1+( )

i
l i-( )! i! l m- i-( )! m i+( )!









=

e
i m ϕ:= ζ π 2π, 1, 1, ( ) 1=

ξ θ l, m, ( ) 2l 1+( ) l m-( )! l m+( )! sin θ( )
m:= ξ π 2, 0, ( ) 4.472=

χ r θ, ϕ, n, l, m, ( )

0

n l- 1-

i

1-( )
i

n l+( )!
2r

n a0








i



n l- 1- i-( )! 2l 1+ i+( )! i!











=

ξ θ l, m, ( ) ζ θ ϕ, l, m, ( ):=

Ψ. r θ, ϕ, n, l, m, ( )
1

π l!

n l- 1-( )!

n n l+( )![ ]
3

1

n a0








3

2


r

n a0








l

 e

r-
n a0

 n l+( )! χ r θ, ϕ, n, l, m, ( )









:=

 Ψ  Plot Orbital dz2

l = 2, m = 0  

 Ψ  Plot Orbital d1

 l = 2, m = 1

 Ψ  Plot Orbital 3pz

l = 1, m = 3 

 Radial 3p Component
Y(2, 1, θ, ϕ)

0 4 8 12 16 20
0.02-

0

0.02

0.04

0.06

0.08

0.1
Radial Distribution

R3p r( )
R3pS r( )
Zero

r

Note:  The above orbitals were plotted with Maple Version 2020 
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 VIII. Linear Combination of Atomic Orbitals (LCAO)
Molecular Quantum Mechanics, Atkins    Chapter 8: An Introduction to Molecular Structure

A molecular orbital is a one-electron wavefunction for an electron that spreads throughout the molecule. The
mathematical forms of such orbitals are highly complicated, even for such a simple species as H2, and they are unknown in

general. All modern work builds approximations to the true molecular orbital by building them from the atomic
orbitals of the atoms present in the molecule.

 Molecular Orbital :   ψ = a ψ1 + b ψ2

ψ1  and ψ2 are wavefunctions for molecules with different electron distributions and the same nuclear locations 
     

The quantum mechanical treatment of bonding in molecules, including water (H2O), is often based on the Linear

Combination of Atomic Orbitals - Molecular Orbital (LCAO-MO) approach. This method provides a theoretical
framework for describing the electronic structure and bonding in molecules. In the LCAO-MO approach, the wave
function (Ψ) of a molecule is expressed as a linear combination of atomic orbitals (AOs) belonging to the constituent
atoms. The molecular orbitals (MOs) are formed by combining these atomic orbitals with appropriate coefficients
(expansion coefficients). The coefficients represent the contributions of each atomic orbital to the molecular orbital,
and they are determined through quantum mechanical calculations.

 For water, the LCAO-MO approach involves combining the atomic orbitals of the two hydrogen atoms and the oxygen
atom to generate a set of molecular orbitals. The molecular orbitals are classified as bonding, antibonding, and
nonbonding orbitals, depending on their energy levels and symmetry properties.
   

In a simplified description, the LCAO-MO treatment of water considers the 1s atomic orbitals of the hydrogen atoms
and the 2s and 2p atomic orbitals of the oxygen atom. These atomic orbitals combine to form a series of molecular
orbitals. The two lowest-energy molecular orbitals are typically the bonding orbitals, where electrons are more
likely to be found, promoting the formation of the covalent O-H bonds. The antibonding orbital is higher in energy
and has a node between the hydrogen atoms, which destabilizes the molecule. The nonbonding orbital has no
significant contribution to bonding and contains a lone pair of electrons localized on the oxygen atom.

The LCAO-MO approach provides valuable insights into the  electronic structure and bonding of water, helping to
explain its bent molecular geometry, the nature of covalent and noncovalent bonds, as well as its overall chemical
behavior. Although it involves simplifications and approximations, it is a powerful tool for understanding the quantum
mechanics of molecular systems, including water.

 Some Methods of Application of LCAO to QM Analysis of Water Orbitals
 Ab initio calculations for water: "Ab initio" refers to methods that rely on basic and established laws of nature without
additional approximations. In this context, it would refer to calculations done from the basic principles of QM.
    

 Hartree-Fock calculations: A specific form of ab initio calculation that is often performed using LCAO. This method
accounts for electron-electron repulsion in a simplified way, which makes it computationally tractable for small molecules.
  

 Density Functional Theory (DFT): DFT is another method for calculating the electronic structure of molecules, which
can also be done using LCAO. It's more approximate than Hartree-Fock, but often more accurate for certain properties.
    

 Basis sets for water : The "basis set" is the set of functions (usually atomic orbitals) that are combined in the LCAO
method. Different basis sets can lead to different results, so the choice of basis set is a major topic of study in Q chemistry.
 
 Electron correlation in water: Electron correlation refers to the ways in which the motions of electrons in a molecule are
linked to each other. This is another major topic of study in quantum chemistry that often involves the use of LCAO.
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 Generating Molecular Orbitals by Linear Combination of Atomic Orbitals (LCAO-MO)

This problem can be very easily solved using the Variational Method. The most sensible trial function to use is one made
up of a linear combination of 1s orbitals centered on each of the two nuclei. The nuclei themselves are at a fixed
distance R from each other (Born-Oppenheimer approximation). Let us assume that R corresponds to the minimum
energy configuration (or equilibrium bond length) of the two nuclei. Let us further assume that this is approximately
twice the H-H distance in the neutral H2 molecule. Define our constants. Distances are measured in Angstroms.  

 See Illustration Below:    Examine the Molecular Orbitals of the Hydrogen molecular  Ion H 2 +

R 2:= a0 0.52917:= Z 1:=

Define the overlap integral (which depends mainly on the distance between the nuclei):

S 1 R+
R

2

3
+









exp R-( ):= S 0.586=

Now, for plotting purposes, we need to establish a GLOBAL coordinate system applicable to the entire molecular orbital.
The atomic orbitals themselves are defined with respect to the respective nuclei. Let us establish the origin for the
GLOBAL coordinate system midway between the two nuclei, and assume that the molecule is oriented along the
X-axis. So, nucleus A is at (x, y) = (−R/2, 0), and nucleus B is at (x, y) = (+R/2, 0).

N 30:= a 3:= b 6:= i 1 N..:= j 1 N..:=

Distances: xi a- 2
i

N
a+:= yj b-

2 j
N

b+:=

rAi j, xi
R

2
+





2

yj( )2+:= rBi j, xi
R

2
-





2

yj( )2+:=

ϕ1sBi j, 2
Z

a0









3

2

 exp
Z-

a0
rBi j, 









:=ϕ1sAi j, 2
Z

a0









3

2

 exp
Z-

a0
rAi j, 









:=

If the atomic orbitals are combined
with different phases, they interfere
destructively and an antibonding
molecular orbital is formed.
Antibonding molecular orbitals have a
higher energy than the atomic orbitals
from which they were formed.

Bonding Orbital: σg1si j, 
1

2 1 S+( )
ϕ1sAi j, ϕ1sBi j, +( ):=

Anti-Bonding Orbital: σu1si j, 
1

2 1 S-( )
ϕ1sAi j, ϕ1sBi j, -( ):=

Bonding Orbital

σg1s

Anti-Bonding Orbital

σu1s
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 Defining and Plotting Molecular Orbitals from 2p orbitals:

Molecular orbitals formed by the 2px orbitals on nuclei A and B. Assume that the overlap integral S has the same
value as before, even though this is will not really be the case. The angular part of the 2px orbital can be
converted to cartesian coordinates to give ~x/r. Define x for atomic orbitals centered at each nucleus:

xAi xi
R

2
+:= xBi xi

R

2
-:= Z 1.5:=

ϕ2pBi j, 
1

3

Z

a0









3

2

 xBi exp
Z-

a0

rBi j, 

2









:=ϕ2pAi j, 
1

3

Z

a0









3

2

 xAi exp
Z-

a0

rAi j, 

2









:=

 The σ bonding and anti-bonding orbitals:

Bonding Orbital: σg2pi j, 
1

2 1 S-( )
ϕ2pAi j, ϕ2pBi j, -( ):=

Anti-Bonding Orbital: σu2pi j, 
1

2 1 S+( )
ϕ2pAi j, ϕ2pBi j, +( ):=

Bonding Orbital

σg2p

Anti-Bonding Orbital

σu2p

Redefine Z to make the more diffuse p orbitals fit in the range of x and y we have chosen above. Since Z is
now treated as a parameter, it can take on ANY value, not just integers.

 Mathcad 3D Perspective Plots of Hydrogenic Molecular Orbitals: Waveforms ψA and ψB are shown below
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 IX. Molecular Structure of Water
Physical Chemistry for the Biosciences, Chang,   Chapter 13

The result is  an extensive three-dimensional  network in which each oxygen atom is  bonded  tetrahedrally to four
hydrogen atoms  by means of two covalent bonds and  two hydrogen bonds. This equality in number of protons and
Jone pairs is  not characteristic of NH3 and HF. Consequently, NH3 and HF can form only rings or chains  and not an

extensive three-dimensional structure.  Figure 13.10 shows the structure of ice I. The distance between adjacent oxygen
atoms  is  2.76 A.  The 0 - H  distance  is  between 0.96 A and  1.02 A, and  the  O · · · H  distance is  between  1.74
A and  1.80 A.  Because  of its  open lattice,  ice has a  lower  density than water.  water reaches  its  maximum density
at 277.15  K  (4  K  above  freezing).  Cooling below 277.15 K decreases the density of water and allows it to rise  to
the surface,  where  freezing  occurs.  An ice layer formed  on the surface does  not  sink; just as 

 13.5  The Structure and Properties of Water  
Water is so common a substance that we often overlook its unique properties.  For example, given its molar mass,
water should be a gas at room temperature, but due to hydrogen bonding,  it has a  boiling  point of 373.15  K at 1
atm.  In this section,  we shall study the structure of ice and liquid  water and consider some biologically significant
aspects of water.  
  
 The Structure of Ice  
To understand  the behavior of water,  we  must first  investigate the structure of  ice.  There are nine known crystalline
forms of ice;  most of them stable only at high  pressures.  Ice I, the familiar form, has been studied  thoroughly.  It has
a  density of  0.924 g mL  - I  at 273  K  and 1 atm pressure.  There is a significant difference between H20 and other

polar molecules, such as  NH3 and HF. The number of hydrogen atoms in a water molecule that can form the  positive

ends of hydrogen bonds is  equal to the number of Jone pairs on the oxygen  atom that can form the negative ends:  
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important, it acts  as a  thermal insulator to protect the biological environment beneath it. 
  

 The Structure of Water  
Although  using  the word  structure  may seem  strange when  discussing  liquids,  most liquids possess  short-range
order. A  convenient way  to study the structure of  liquids is  to use the radial distribution function, g(r). This

function is defined so that  4nr 2g(r)dr gives the probability that a  molecule will  be found  in a spherical shell of  width dr
at distance r from the center of another molecule.  For a  crystalline solid,  a  plot of g(r)  versus r gives a  series  of
sharp lines because crystals  have long-range  order.  In  contrast,  as  Figure  13.11  shows,  the  radial  distribution
curve  for  liquid  water at 4°C  produces a major peak at 2.90 A, with weaker peaks at 3.50 A, 4.50 A, and  7.00 A. 

 Figure 13.11 

Experimental radial distribution curve
for water at 4°C. The peaks become
broader at higher temperatures. 

Beyond  7.00 A, the function  is  essentially  zero,  meaning that the local  order does  not extend  beyond  this  distance.
X-ray diffraction studies of ice shows that the 0 - 0  distance  is  2.76 A.  The strong peak at 2.90 A suggests  a  very
similar  tetrahedral arrangement in the liquid. The peak at 3.50 A does not correspond to any  bond  distance in ice  I,
which  does,  however,  have  interstitial sites  at a  distance  of  3.50 A from each O  atom.  Therefore, when ice  melts,
some of the water molecules  break loose and become trapped  in these interstitial sites, which are responsible for  the
peak at 3.50 A.  The peaks at 4.50 A and 7.00 A  are also consistent with the tetrahedral arrangement.  

The above discussion  suggests  that the extensive  three-dimensional  hydrogen- bonded structure that characterizes ice
I is largely intact in water, although the bonds  may  become  bent and  distorted.  On melting,  monomeric  water
molecules  occupy  holes  in the remaining " icelike"  lattice,  causing  the density  of water to be greater  than that of ice.
As temperature increases, more hydrogen bonds are broken, but at  the same time the kinetic energy of molecules
increases.  Consequently,  more water  molecules are trapped, but the elevated kinetic energy decreases the density of
water  because the molecules occupy a greater volume. Initially, the trapping of monomeric  water molecules  outweighs
the expansion in  volume  due  to the increase  in  kinetic  energy, so the density rises from 0°C to 4°C.  Beyond this
temperature, the expansion  predominates, so the density decreases with increasing temperature (Figure 13.12). 

 Hydrophobic Interaction 

Oil and water do not mix. The reason seems to be that the dipole- induced dipole and dispersion forces between
water and nonpolar oil molecules are weak.  From this observation, we might conclude that the enthalpy of mixing
(ΔH) is  positive, which  causes  ΔG  to  be  positive  ΔG  = ΔH - TΔS).  Thus, the solubility of oil in water is very
low.  But this explanation is  incorrect. The  unfavorable interaction is primarily due  to  the hydrophobic  interaction
(also called  the hydrophobic effect or hydrophobic bond). The thermodynamic quantities  for the transfer  of small
non- polar molecules  from  nonpolar solvents  to  water.  ΔS  is negative for all of the compounds. When nonpolar
molecules enter  the aqueous medium, some hydrogen bonds must be broken to make room or create  a cavity for
the solutes. This part of the interaction is endothermic because the broken  hydrogen  bonds are much stronger than
the dipole- induced  dipole and  dispersion  interactions.  Each solute molecule  is  now  trapped  in an icelike  cage
structure,  referred  to as  the clathrate cage model,  which consists  of a  specific number of water  molecules  held
together  by  hydrogen  bonds  ( Figure  13 .13).  The formation  of the  clathrate has two important consequences.
First, the newly formed  hydrogen bonds  (an exothermic process) can partly or totally compensate for the hydrogen
bonds that  were broken initially to make the cavity. This explains  why ΔH  could  be negative,  zero, or positive for
the overall process.  Furthermore, because the cage structure is  highly ordered (a decrease in the number of 
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microstates), there is  an appreciable decrease in entropy, which far outweighs the increase in entropy due to the
mixing of  solute and water molecules,  so that ΔS  is  negative. Thus,  the immiscibility  of non- polar molecules and
water, or the hydrophobic interaction, is entropy driven rather  than enthalpy driven.*

Hydrophobic  interaction  has  a  profound  effect  on  the  structure  of proteins.  When the polypeptide chain of a
protein folds  into a  three-dimensional structure in  solution,  the  nonpolar amino  acids  (for  example,  alanine,
phenylalanine,  proline,  tryptophan, and valine) are in the interior of the macromolecule and have little or no  contact
with  water,  while the polar amino acid  residues  (such as arginine,  aspartic  acid,  glutamic acid,  and  lysine)  are on
the exterior.  An insight  into  this  entropy- driven process can be gained by considering just two nonpolar molecules
in aqueous  solution (Figure 13.14). The hydrophobic interaction causes the nonpolar molecules  to come together
into a  single  cavity to reduce the unfavorable  interactions with water by decreasing the surface area. This response
destroys part of the cage structure,  resulting  in  an  increase  in  ΔS  and  hence  a  decrease  in  ΔG.  Moreover,
enthalpy  increases  (ΔH > 0) because some of the hydrogen bonds in the original  cage structures are broken.
Similarly, the folding of a  protein is an example  of this phenomenon because it minimizes the exposure of nonpolar
surfaces  to water.  Figure 13.10 

Structure of ice. The red dotted lines represent hydrogen bonds.

 Left: The dissolution of nonpolar molecules in water is
unfavorable because of the large decrease in entropy
resulting from clathrate formation, even though the process
is exothermic (ΔH < 0). Consequently, ΔG > 0.
 Right: As a result of hydrophobic interaction, the non
polar molecules come together, releasing some of the
ordered water molecules in the clathrate structure and thus
increasing entropy. This is a thermodynamically favorable 
process (Δ< 0), even though it is endothermic (ΔH > 0)
because more hydrogen bonds are broken than are made. 
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 Plotting the Structure of a Water Molecule Using Mathematica 12.1
See for example: Molecular Physical Chemistry, José Teixeira-Dias,  Section 3.4

 Below is the Mathematica Code that was used to Generate the 3D Water Plots

 (*Hybridization of Water: Define the Mathematica Molecular Parameters for Water, e.g.  radii*) 

radiusO=0.66;(*Oxygen*)radiusH=0.31;(*Hydrogen*)(*Define the atoms*)
oxygen={radiusO,{0,0,0}};
hydrogen1={radiusH,{Cos[104.5/2 Degree],Sin[104.5/2 Degree],0}};
hydrogen2={radiusH,{Cos[104.5/2 Degree],-Sin[104.5/2 Degree],0}};
(*Define the bonds*)
bond1=Line[{oxygen[[2]],hydrogen1[[2]]}];
bond2=Line[{oxygen[[2]],hydrogen2[[2]]}];
(*Define the spheres for the atoms*)
sphereO={Red,Sphere[oxygen[[2]],oxygen[[1]]]};
sphereH1={Blue,Sphere[hydrogen1[[2]],hydrogen1[[1]]]};
sphereH2={Blue,Sphere[hydrogen2[[2]],hydrogen2[[1]]]};
(*Create the 3D plot*)
Graphics3D[{sphereO,sphereH1,sphereH2,bond1,bond2},Boxed->False] 

 ( *Plot a 3D Representation of a Water Molecule with ROR= 0.9611 Angstrom*)

Graphics3D[{Red,Sphere[{0,0.760117,-0.470585},0.7],
  Sphere[{0,-0.760117,-0.470585},0.7],Blue,Sphere[{0,0,0.117646}]},
 Lighting->"Neutral",Boxed->False,ViewPoint->Right]

 The molecular orbitals (MOs) of water are shown in the figure below. 
The four orbitals to the left of the dashed line each contain two electrons. To the right of the dashed line is the
first empty orbital (lowest unoccupied molecular orbital, or LUMO); this plays a role in water hydrogen bonding.

 Electrostatic Potential Contours for a Dipole
   

The following Mathematica code generates contour plots in the xy-plane for the 
electrostatic potential of a distribution of two charges ( − 1 and 1), 
located on the y-axis, at y = 0.5 and y = − 0.5. 

C1ear[f]
f[q_,p_,r_]:=Sum[q[[i]]/Norm[r-p[[i]]],{i,Length[q]}] 
q={-1,1} 
Length[q]
q[[1]] , q[[2]], p={{0.,0.5},{0.,-0.5}}, p[[1]], p[[2]] 
c=Table[Lighter[Blue,i],{i,0,1,1/6}]
ContourPlot[f[q,p,{x,y}],{x,-3,3},{y,-3,3},
 ContourShading->c,ContourLabels->True,PlotPoints->150,ImageSize->{300,300}]
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 Hybridization of Water
 https://byjus.com/jee/hybridization-of-h2o/#:~:text=So%20if%20we%20

 observe%20the,are%20occupied%20by%20lone%20pairs

 
The formation of water on the basis of hybridization. 
The central atom here is oxygen which is hybridized. 
So if we observe the formation of the water molecule there are three 2p orbitals and one 2s orbital. 
  

 Hybridization:  These combine to create the four sp3 hybrid orbitals.

 Hybridization of Water:     Four sp3 hybrid orbitals

 Bent Shape Orbital Overlap in H2O

Two-hybrid orbitals form covalent bonds with each hydrogen atom 
and two hybrid orbitals are occupied by lone pairs.

 Structure
*In H2O hybridization orbitals having the same energy level will combine to form hybrid orbitals.

*The water molecule has two lone pairs and two bond pairs.
*Each O‒H covalent bond is called a sigma (σ) bond.
*H2O Molecular Geometry and Bond Angles

 H2O Molecular Geometry and Bond Angles
H2O has a tetrahedral arrangement of molecules or an angular geometry. 

This is mainly because the repulsion from the lone pair combination is more than bond-pair repulsion. 
Additionally, the existing pairs do not lie in the same plane. 
One pair is below the plane and the other one is above. 
This bond geometry is commonly known as a distorted tetrahedron.

 Geometry of the water molecule
Distorted tetrahedral is the geometry of a water molecule.

As a result, the angle in a water molecule is 104.5° which again falls short of the true tetrahedral angle of 109°.
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 10.2 Polyatomic molecules
 
The ideas we have introduced so far are easily extended to polyatomic molecules.  Each s bond in a polyatomic molecule is
formed by the merging of orbitals with cylindrical symmetry about the internuclear axis and the pairing of the spins of  the
electrons they contain. Likewise, each p bond (if there is one) is formed by pairing electrons that occupy atomic orbitals of
the appropriate symmetry. The  description of the electronic structure of H2O will make this clear, but also bring  to light a 

deficiency of the theory. The  valence  electron  configuration  of  an O atom  is                         . The  two  unpaired
electrons in the O2p orbitals can each pair with an electron in a H1s  orbital, and each combination results in the formation
of a s bond (each bond has cylindrical symmetry about the respective O–H internuclear axis, Fig. 10.6).  Because the 2p y
and 2p z  orbitals lie at 90° to each other, the two s bonds they form  also lie at 90° to each other. We predict, therefore,
that H2O should be an angular  (‘bent’) molecule, which it is. However, the model predicts a bond angle of 90°,  whereas

the actual bond angle is 104°. Clearly, the VB model needs to be improved.

 10.6 The structures of polyatomic molecules 

Polyatomic molecules are the building blocks of living organisms, and to understand
their electronic structures we need to use MO theory; by doing so, we shall come to
understand the unique role of carbon. The bonds in polyatomic molecules are built in
the same way as in diatomic  molecules, the only differences being that we use more
atomic orbitals to construct the molecular orbitals and these molecular orbitals
spread over the entire  molecule, not just the adjacent atoms of the bond. In general,
a molecular orbital  is a linear combination of all the atomic orbitals of all the atoms in
the molecule. 

In H2O, for instance, the atomic orbitals are the two H1s orbitals, the O2s orbital,

and the three O2p orbitals (if we consider only the valence shell). From these six
atomic orbitals we can construct six molecular orbitals that differ in energy. The
lowest-energy, most strongly bonding orbital has the least number of  nodes between
adjacent atoms. The highest-energy, most strongly antibonding  orbital has the
greatest numbers of nodes between neighboring atoms (Fig. 10.36).  According to
MO theory, the bonding influence of a single electron pair is distributed over all the
atoms, and each electron pair (the maximum number of  electrons that can occupy
any single molecular orbital) helps to bind all the atoms  together. In the LCAO
approximation, each molecular orbital is modeled as a linear combination of  atomic
orbitals of  matching symmetry, with  atomic orbitals contributed by all the atoms in
the molecule. Thus, a typical molecular orbital in  H2O constructed from H1s orbitals

(denoted ψA and ψB ) and O2s and O2p y and O2pz  orbitals will have the

composition 

The O2px  orbital (with x perpendicular to the molecular frame) does not contribute

because it has the wrong symmetry to overlap with the H1s  orbitals. Because  five
atomic orbitals are being used to form the LCAO, there are five molecular orbitals of
this kind: the lowest-energy (most bonding) orbital will have no inter-nuclear nodes
and the highest-energy (most antibonding) orbital will have a node between each pair
of neighboring nuclei.

Fig. 10.36  Schematic form of the molecular
orbitals of H2O and their energies.

VXPhysics 27



 X. Radial Distribution Functions of Water: Derived Radiation Total Scattering

 TWK's Quantitative Approach to Modeling the Radial Behavior of Water

The Radial Distribution Functions of Water as Derived from Radiation Total Scattering Experiments,
ISRN Physical Chemistry, Volume 2013, Article ID 279463

This is a state-of-the-art determination of water structure using radiation, mostly X-ray and neutron,
scattering methods to measure the radial distribution functions of water, gOO(r), gOH(r), and gHH(r). These

three functions collectively describe the way atoms are arranged in the liquid and, therefore, form the
bedrock for studying the statistical mechanical basis for water.  

The gOH(r) function for water is arguably our only real chance of “seeing” a hydrogen bond in the flesh. The

intramolecular version of this function gives the OH bond within the water molecule, but the intermolecular
version shows clearly the way hydrogen atoms on one water molecule cluster around the oxygen atom of
another water molecule. Although hydrogen bonding can exist between a variety of molecules, only in water
(or perhaps hydrogen fluoride—but hydrogen fluoride is a really nasty chemical to investigate experimentally)
do you see this clustering so vividly. Emanating from the hydrogen bond between water molecules comes a
quite unique molecular arrangement, compared to most other known liquid materials. The gOO(r), gOH(r),

and gHH(r) functions carry the information about that structure, which on one hand wants to be ordered and

tetrahedral like ice but at the same time wants to be disordered like “normal” liquids such as mercury or
liquid gold.

The Radial Distribution Function, G(r,t). Unlike in a crystal, the atoms and molecules in a liquid are in a state
of rapid and diffusive motion. There will, as a result, be a local density of atoms and molecules which
fluctuates rapidly with time:

where Ri(t) is the position of atom i at time t. Hence, even if we could find some probe that would capture

these density fluctuations that would not by itself be particularly useful, since it would be difficult to identify
any clear features or trends in these seemingly randomly changing density fluctuations. Instead, to capture
useful information, it is necessary to perform an autocorrelation on the density fluctuations, to see how

𝑡they vary, depending on the (relative) positions of the atoms, r, and the relative difference in time, , between
samplings of the density  X-ray atom pair correlation functions G(r,t):

Grt r t, ( ) rptpn rp r+( ) n tp t+( )





d





d=

j i

δ r Rj t( )+ Ri 0( )-( )=

In effect, we are sitting on an atom and counting all the atoms that we find at a given displacement,r, from that
atom, converting that number to a local density. This local density is then averaged over all the atoms in the
system and compared with the density of atoms in the system as a whole. 

 Radial Distribution Function, g(r) 
is a convenient way of keeping track of how the local number density varies with displacement from an
average atom and with respect to the average number density.
For the water molecules used in the present simulations, the average OH bond distance was 0.976 with RMS
deviation 0.066 Å, and the average HH distance was 1.55 Å with RMS deviation 0.103 Å 
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  X-Ray Diffraction from  Compton Scattering  Experimental Results for RDF

 Read Experimental G Calculation Function into Mathcad

GCalculationFunction READPRN "Radial Distribution Function.txt"( ):=

Grt r t, ( ) rptpn rp r+( ) n tp t+( )





d





d=

j i

δ r Rj t( )+ Ri 0( )-( )=

Grt GCalculationFunction:= rows Grt( ) 815=

radius Grt
0 

:= gHH Grt
1 

:= gOH Grt
3 

:= gOO Grt
5 

:=

 P lot the Experimental Data

Curves represent a superposition of modified  atom pair correlation 
functions  g(r)  descriptive  of  O-O, O-H, and  H-H interactions. 
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The  maximum  around  2.9 Å in the functions
G(r) must  be ascribed  to  interactions  
between  oxygen  atoms  from  neighboring  
water molecules.  The large maximum around 
 1 Å must be ascribed to the intramolecular 
O-H interaction.
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